Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38611251

ABSTRACT

Polyureas have been widely applied in many fields, such as coatings, fibers, foams and dielectric materials. Traditionally, polyureas are prepared from isocyanates, which are highly toxic and harmful to humans and the environment. Synthesis of polyureas via non-isocyanate routes is green, environmentally friendly and sustainable. However, the application of non-isocyanate polyureas is quite restrained due to their brittleness as the result of the lack of a soft segment in their molecular blocks. To address this issue, we have prepared polyester polyureas via an isocyanate-free route and introduced polyester-based soft segments to improve their toughness and endow high impact resistance to the polyureas. In this paper, the soft segments of polyureas were synthesized by the esterification and polycondensation of dodecanedioic acid and 1,4-butanediol. Hard segments of polyureas were synthesized by melt polycondensation of urea and 1,10-diaminodecane without a catalyst or high pressure. A series of polyester polyureas were synthesized by the polycondensation of the soft and hard segments. These synthesized polyester-type polyureas exhibit excellent mechanical and thermal properties. Therefore, they have high potential to substitute traditional polyureas.

2.
Theriogenology ; 200: 114-124, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36805248

ABSTRACT

The success of reprogramming is dependent on the reprogramming factors enriched in the cytoplasm of recipient oocytes and the potential of donor nucleus to be reprogrammed. Histone 3 lysine 9 trimethylation (H3K9me3) was identified as a major epigenetic barrier impeding complete reprogramming. Treating donor cell with vitamin C (Vc) can enhance the developmental potential of cloned embryos, but the underlying mechanisms still need to be elucidated. In this study, we found that 20µg/mL Vc could promote proliferation and inhibit apoptosis of BFFs, as well as down-regulate the H3K9me3-dependent heterochromatin and increase chromatin accessibility. Inhibited the expression of KDM4A resulted in increasing apoptosis rate and the H3K9me3-dependent heterochromatin, which can be restored by Vc. Moreover, Vc up-regulated the expression of KDM4A through PI3K/PDK1/SGK1 pathway. Inhibiting any factor in the signal axis of this PI3K pathway not only suppressed the activity of KDM4A but also substantially increased the level of H3K9me3 modification and the expression of the HP1α protein. Finally, Vc can rescue those negative effects induced by the blocking the PI3K/PDK1/SGK1 pathway. Collectively, Vc can down-regulate the H3K9me3-dependent heterochromatin in BFFs via PI3K/PDK1/SGK1/KDM4A signal axis, suggesting that Vc can turn the chromatin status of donor cells to be reprogrammed more easily.


Subject(s)
Buffaloes , Heterochromatin , Animals , Phosphatidylinositol 3-Kinases , Ascorbic Acid , Chromatin , Fibroblasts
3.
Curr Biol ; 31(6): 1337-1343.e4, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33545046

ABSTRACT

Memory forms when a previously neutral stimulus (CS+) becomes competent to predict a biologically potent stimulus (US). However, if the CS+ is repeatedly presented without the US after the memory formation, this memory will be suppressed by newly formed extinction memory.1,2 The striking feature of extinction learning is that it requires repeated trials to robustly form extinction. Extended repetition only yields memories that remain transient in nature,3 thus imposing challenges in understanding the underlying mechanisms of extinction learning. Here, we took advantage of the versatile genetic tools4 and the well-characterized circadian system of Drosophila5,6 to link these unique features to clock neurons. We report that inhibiting the activity of clock neurons blocks the formation of extinction memory. Further investigation attributes this role to a subset of cryptochrome-positive dorsal neurons 1 (DN1s) and their downstream SIFamide neurons. The requirement of clock neurons from a gating mechanism of extinction for a single extinction learning trial robustly causes typical extinction when coupled with acute activation of DN1s, as marked by the initially enhanced but eventually diminished memory suppression. Accordingly, we detected specific neural responses to extinction training in a few DN1s via calcium imaging fulfilled by the TRIC tool,7 but not in dorsal neurons 2 or dorsolateral neurons. Based on these findings, we propose that in extinction of appetitive long-term memory, multiple trials of extinction learning robustly activate DN1 clock neurons to open the gate of extinction, which may contribute to the transient nature of extinction memory.


Subject(s)
Drosophila , Extinction, Psychological , Memory , Neurons , Animals , Circadian Clocks , Learning , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...